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LEARNING ANALYTICS IN DER HOCHSCHULLEHRE

l.  Was ist «Learning Analytics», und was kann es (nicht)?
ll.  Innovatoren...

lll. ... und Nachzugler

IV. Learning Analytics an Schweizer Hochschulen

V.  Zukunftsperspektiven



LEARNING ANALYTICS

«the measurement, collection, analysis and reporting of data
about learners and their contexts for purposes of understanding
and optimizing learning and the environments in which it occurs»

(Elias, 201 1)



EINSATZMOGLICHKEITEN

* Prognose der Lernleistung und Modellierung der Lernenden

* Vorschlage relevanter Lernressourcen (personalisiertes Lernen)
* Verstarkte Reflexion und Sensibilisierung fur den Lernprozess

* Verbesserung sozialer Lernumgebungen

* Erkennen von unerwunschtem Lernverhalten

* Erkennen von emotionalen Zustanden der Lernenden



HINDERNISSE UND HERAUSFORDERUNGEN

* analoge Lernsettings; «blinde Flecken» digitaler Datensatze
* beschrankte Validitat von Analyseergebnissen und Prognosen

* Von «Big Data» zu «meaningful Data»:
— Interpretation und Relevanz von Befunden

— Ubersetzung von Ergebnissen in die padagogische Praxis
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INNOVATOREN...
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SNAPP an der Universitat von Wollongong, Australien

Early Alert an der University of New England, Australien

Social Networks Adapting Pedagogical Practice (SNAPP)
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UND NACHZUGLER

Innovators

adopters
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Ubersetzungen von laggard
Substantiv

Nachzugler
latecomer, laggard, straggler, backmarker, late arrival, lagger

der Trodler
junk dealer, dawdler, laggard, slowcoach, lagger, slowpoke

Adjektiv

faul
lazy, rotten, foul, idle, putrid, decayed

o

Verschlafen wir den digitalen Wandel in der
Hochschullehre?

(«Trodlery)

Oder warten wir ab, um von den
Erfahrungen und Fehler der Pioniere zu
lernen?

(«Skeptikery)



HEMMENDE FAKTOREN FUR DEN EINSATZVON
LEARNING ANALYTICS AN SCHWEIZER HOCHSCHULEN

* Ausbaufahiger Grad an Ausschopfung der Moglichkeiten digitaler Lernplattformen

starke Verhaftung in traditionellen Lehr-Lern-Settings; hohe Bedeutung des Face-to-
Face Unterrichts

Skepsis gegenuber datengestutzten Analyse- und Prognoseresultaten (hohes
Vertrauen in Moglichkeiten und Fahigkeiten zur (Selbst-)Reflexion der Lehrenden und
Studierenden)

fehlende ,,Leuchtturmprojekte*

Fehlende Ressourcen

Ethische Bedenken (Datensicherheit, Schutz der Privatsphare, ,,glaserne Studenten®)



6 GRUNDLEGENDE PRINZIPIEN FUR EINE ETHISCHE LEARNING
ANALYTICS-POLITIK AN HOCHSCHULEN (SLADE & PRINSLOO, 201 3)

(I) Learning Analytics sind als moralische Praxis aufzufassen, die nicht nur auf Effektivitat

fokussiert, sondern auf das Angemessene und moralisch Notwendige

(2) Studierende sind als aktiv Handelnde und Mitwirkende an Learning Analytics zu
beteiligen, und nicht allein als Rezipienten von Interventionen und Dienstleistungen

(3) Identitat und Leistung von Studierenden gilt es als zeitlich dynamische Konstrukte zu
begreifen: Learning Analytics stellen lediglich eine Momentaufnahme der Lernenden zu
einem bestimmten Zeitpunkt und in einem spezifischen Kontext dar (Gefahr des
Labelling und der Stereotypisierung)



6 GRUNDLEGENDE PRINZIPIEN FUR EINE ETHISCHE LEARNING
ANALYTICS-POLITIK AN HOCHSCHULEN (SLADE & PRINSLOO, 201 3)

(4) Studierendenerfolg ist als komplexes, multidimensionales Phanomen zu verstehen

(5 Transparenz ist wichtig; im Hinblick auf den Verwendungszweck der Daten, unter
welchen Bedingungen die Datennutzung erfolgt, wie der Zugang zu den Daten geregelt
ist und wie die Identitat von Individuen geschiitzt wird (Moglichkeit zum Opt-in/Opt-
out)

(6) Die Nutzung von Daten ist fur Institutionen der Hochschulbildung unverzichtbar, um
Studierenden eine angemessene und effektive Unterstutzung in ihren Lernprozessen zu
bieten



ZUKUNFTIGE ENTWICKLUNGEN:TECHNOLOGIE

Multimodale Learning Analytics: Erschliessen und Verknupfen neuer Datenquellen und
Analysemethoden (vgl. Ochoa & Worsley, 201 6)

Emotionale Learning Analytics (Affekterkennung uber Analyse von Gesichtsausdruicken,
physiologischen Daten, Sprachgebrauch, vgl. z.B. D’Mello, 2017)

Soziale Netzwerkanalyse (z.B. Ferguson & Shum, 2012)

Heterogene Vernetzte Lernumgebungen (vgl. Suthers, 2015)



ZUKUNFTIGE ENTWICKLUNGEN:TECHNOLOGIE

In der Schweiz: Computer-Human Interaction in Learning and Instruction
(CHILI)-Projektgruppe an der EPFL

Scala MOOC and Eye-tracking Classroom Attention Monitoring: Motion & Gaze
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ZUKUNFTIGE ENTWICKLUNGEN:TRENDS

* Selbstreguliertes Lernen (Entwicklung der Selbstlernkompetenz; herausfordernder Anspruch
an Studienanfanger*innen)

* Diversifizierung der Studierendenschaft (altere Studierende, nicht-traditionelle Studierende)
* Phanomen der ,,Massenuniversitat*? (Verschlechterung der Betreuungsverhaltnisse)

* Blended und Online Learning (Flexibilisierung der Lernangebote; Online Lernplattformen,
MOOCs)

* ,,Konsumerisierung* der Hochschulbildung (Der/die Studierende als Konsument*in)

* Grossere Rechenschaftspflicht im Kontext von NPM (Studienabbriiche, effizienter
Ressourceneinsatz)



ZUKUNFTIGE ENTWICKLUNGEN

* Kooperationen zwischen Bildungseinrichtungen:Teilen von gesammelten Daten zur

Verfeinerung von Learning Analytics-Modellen und Algorithmen; Erfahrungsaustausch

* Anknipfen an Lerntheorien und Lehr-Lern-Forschung: Interpretation und Implikationen

der gewonnenen Informationen mit Lernerfolg unklar

* Mehr als die Implementation von ,,Tools“...



MEHRALS DIE IMPLEMENTATION VON ,, TOOLS...

Technologische Prozesse & Praktiken
Infrastruktur (Policy)

Leadership

Organisationskultur Skills &
("mind-set") Werthaltungen

Institutionelle Kapazitaten fur Learning Analytics
(in Anlehnung an Norris & Baer; 201 3)
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